Saliency Weighted Features for Person Re-identification

نویسندگان

  • Niki Martinel
  • Christian Micheloni
  • Gian Luca Foresti
چکیده

In this work we propose a novel person re-identification approach. The solution, inspired by human gazing capabilities, wants to identify the salient regions of a given person. Such regions are used as a weighting tool in the image feature extraction process. Then, such novel representation is combined with a set of other visual features in a pairwise-based multiple metric learning framework. Finally, the learned metrics are fused to get the distance between image pairs and to reidentify a person. The proposed method is evaluated on three different benchmark datasets and compared with best state-of-the-art approaches to show its overall superior performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Person re-ID while Crossing Different Cameras: Combination of Salient-Gaussian Weighted BossaNova and Fisher Vector Encodings

Person re-identification (re-ID) is a challenging task in the camera surveillance field, since it addresses the problem of re-identifying people across multiple non-overlapping cameras. Most of existing approaches have been concentrated on: 1) achieving a robust and effective feature representation; and 2) enforcing discriminative metric learning to predict if two images represent the same iden...

متن کامل

Person Re-Identification By Saliency Learning

Human eyes can identify person identities based on small salient regions, i.e. person saliency is distinctive and reliable. Saliency relates to matching regions with attributes that make a person distinctive and are useful in finding the same person across camera views. Person re-identification with saliency learning can be applied in human tracking, surveillance , retrieval etc.

متن کامل

Unsupervised Learning of Generative Topic Saliency for Person Re-identification

Existing approaches to person re-identification (re-id) are dominated by supervised learning based methods which focus on learning optimal similarity distance metrics. However, supervised learning based models require a large number of manually labelled pairs of person images across every pair of camera views. This thus limits their ability to scale to large camera networks. To overcome this pr...

متن کامل

Person Re-identification: What Features Are Important?

State-of-the-art person re-identification methods seek robust person matching through combining various feature types. Often, these features are implicitly assigned with a single vector of global weights, which are assumed to be universally good for all individuals, independent to their different appearances. In this study, we show that certain features play more important role than others unde...

متن کامل

Features for Multi-Target Multi-Camera Tracking and Re-Identification

Multi-Target Multi-Camera Tracking (MTMCT) tracks many people through video taken from several cameras. Person Re-Identification (Re-ID) retrieves from a gallery images of people similar to a person query image. We learn good features for both MTMCT and Re-ID with a convolutional neural network. Our contributions include an adaptive weighted triplet loss for training and a new technique for har...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014